65 research outputs found

    Generalized Perron--Frobenius Theorem for Nonsquare Matrices

    Full text link
    The celebrated Perron--Frobenius (PF) theorem is stated for irreducible nonnegative square matrices, and provides a simple characterization of their eigenvectors and eigenvalues. The importance of this theorem stems from the fact that eigenvalue problems on such matrices arise in many fields of science and engineering, including dynamical systems theory, economics, statistics and optimization. However, many real-life scenarios give rise to nonsquare matrices. A natural question is whether the PF Theorem (along with its applications) can be generalized to a nonsquare setting. Our paper provides a generalization of the PF Theorem to nonsquare matrices. The extension can be interpreted as representing client-server systems with additional degrees of freedom, where each client may choose between multiple servers that can cooperate in serving it (while potentially interfering with other clients). This formulation is motivated by applications to power control in wireless networks, economics and others, all of which extend known examples for the use of the original PF Theorem. We show that the option of cooperation between servers does not improve the situation, in the sense that in the optimal solution no cooperation is needed, and only one server needs to serve each client. Hence, the additional power of having several potential servers per client translates into \emph{choosing} the best single server and not into \emph{sharing} the load between the servers in some way, as one might have expected. The two main contributions of the paper are (i) a generalized PF Theorem that characterizes the optimal solution for a non-convex nonsquare problem, and (ii) an algorithm for finding the optimal solution in polynomial time

    Software-defined wireless transport networks for flexible mobile backhaul in 5G systems

    Get PDF
    Traditionally microwave backhaul has been configured and operated in a static manner by means of vendor specific management systems. This mode of operation will be difficult to adapt to the new challenges originated by 5G networks. New mechanisms for adaptation and flexibility are required also in this network segment. The usage of a signaled control plane solution (based on OpenFlow) will facilitate the operation and will provide means for automation of actions on the wireless transport network segment. In addition to that, a standard control plane helps to reach the multi-vendor approach reducing complexity and variety of current per-vendor operation. This paper presents the motivation for the introduction of programmability concepts in wireless transport networks and illustrate the applicability of such control plane with two relevant use cases for dynamically controlling wireless transport nodes in 5G networks. Extensions to OpenFlow protocol are also introduced for building Software Defined Wireless Transport Networks (SDWTNs).This research was (partially) funded by the Office of the Chief Scientist of the Israel Ministry of Economy under the Neptune generic research project (the Israeli consortium for network programming). This work has been also (partially) funded by the EU H2020 Xhaul Project (grant no. 671598)

    A riccati equation approach to the singular LQG problem

    Full text link
    The problem of optimal fixed-order dynamic compensation for the singular LQG problem is considered. Necessary conditions characterizing the optimal compensator for the case involving both singular measurement noise and singular control weighting are given. The solution consists of a set of two algebraic Riccati equations and two Lyapunov equations coupled by three projection matrices. One projection is the standard order reduction projection while the other two projections reflect the two types of singularity that exist in the system. The three projections are shown to satisfy disjointness conditions. In addition to order reduction, an advantage of the fixed-structure approach is that differentiation, which is often undersirable from a practical point of view and which may exist in the unconstrained optimal control, can be avoided. It is shown that the fixed-order compensator agrees with the unconstrained solution when the latter possesses the same number of differentiations as are included in the prespecified controller structure and when the order is selected appropriately.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30823/1/0000485.pd

    Dynamic SDN Controller Load Balancing

    Get PDF
    The software defined networking (SDN) paradigm separates the control plane from the data plane, where an SDN controller receives requests from its connected switches and manages the operation of the switches under its control. Reassignments between switches and their controllers are performed dynamically, in order to balance the load over SDN controllers. In order to perform load balancing, most dynamic assignment solutions use a central element to gather information requests for reassignment of switches. Increasing the number of controllers causes a scalability problem, when one super controller is used for all controllers and gathers information from all switches. In a large network, the distances between the controllers is sometimes a constraint for assigning them switches. In this paper, a new approach is presented to solve the well-known load balancing problem in the SDN control plane. This approach implies less load on the central element and meeting the maximum distance constraint allowed between controllers. An architecture with two levels of load balancing is defined. At the top level, the main component called Super Controller, arranges the controllers in clusters, so that there is a balance between the loads of the clusters. At the bottom level, in each cluster there is a dedicated controller called Master Controller, which performs a reassignment of the switches in order to balance the loads between the controllers. We provide a two-phase algorithm, called Dynamic Controllers Clustering algorithm, for the top level of load balancing operation. The load balancing operation takes place at regular intervals. The length of the cycle in which the operation is performed can be shorter, since the top-level operation can run independently of the bottom level operation. Shortening cycle time allows for more accurate results of load balancing. Theoretical analysis demonstrates that our algorithm provides a near-optimal solution. Simulation results show that our dynamic clustering improves fixed clustering by a multiplicative factor of 5

    5G and beyond networks

    Get PDF
    This chapter investigates the Network Layer aspects that will characterize the merger of the cellular paradigm and the IoT architectures, in the context of the evolution towards 5G-and-beyond, including some promising emerging services as Unmanned Aerial Vehicles or Base Stations, and V2X communications

    A Multidisciplinary survey on controversies in the use of EUS-guided FNA: assessing perspectives of surgeons, oncologists and gastroenterologists

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>EUS-guided FNA can help diagnose and differentiate between various pancreatic and other lesions.</p> <p>The aim of this study was to compare approaches among involved/relevant physicians to the controversies surrounding the use of FNA in EUS.</p> <p>Methods</p> <p>A five-case survey was developed, piloted, and validated. It was collected from a total of 101 physicians, who were all either gastroenterologists (GIs), surgeons or oncologists. The survey compared the management strategies chosen by members of these relevant disciplines regarding EUS-guided FNA.</p> <p>Results</p> <p>For CT operable T2NOM0 pancreatic tumors the research demonstrated variance as to whether to undertake EUS-guided FNA, at p < 0.05. For inoperable pancreatic tumors 66.7% of oncologists, 62.2% of surgeons and 79.1% of GIs opted for FNA (p < 0.05). For cystic pancreatic lesions, oncologists were more likely to send patients to surgery without FNA. For stable simple pancreatic cysts (23 mm), most physicians (66.67%) did not recommend FNA. For a submucosal gastric 19 mm lesion, 63.2% of surgeons recommended FNA, vs. 90.0% of oncologists (p < 0.05).</p> <p>Conclusions</p> <p>Controversies as to ideal application of EUS-FNA persist. Optimal guidelines should reflect the needs and concerns of the multidisciplinary team who treat patients who need EUS-FNA. Multi-specialty meetings assembled to manage patients with these disorders may be enlightening and may help develop consensus.</p

    How to establish the outer limits of reperfusion therapy

    Get PDF
    Reperfusion therapy with intravenous alteplase and endovascular therapy are effective treatments for selected patients with acute ischemic stroke. Guidelines for treatment are based upon randomized trials demonstrating substantial treatment effects for highly selected patients based on time from stroke onset and imaging features. However, patients beyond the current established guidelines might benefit with lesser but still clinically significant treatment effects. The STAIR (Stroke Treatment Academic Industry Roundtable) XI meeting convened a workgroup to consider the “outer limits” of reperfusion therapy by defining the current boundaries, and exploring optimal parameters and methodology for determining the outer limits. In addition to statistical significance, the minimum clinically important difference should be considered in exploring the limits of reperfusion therapy. Societal factors and quality of life considerations should be incorporated into assessment of treatment efficacy. The threshold for perception of benefit in the medical community may differ from that necessary for the Food and Drug Administration approval. Data from alternative sources such as platform trials, registries and large pragmatic trials should supplement randomized controlled trials to improve generalizability to routine clinical practice. Further interactions between industry and academic centers should be encouraged
    • …
    corecore